

INFO-2023-1 Informational Study Report 09/05/2023

Table of Contents

1.0	Summary	4
1.1	INFO-2023-1 NRIS Results	4
2.0	Introduction	5
3.0	Study Scope	7
3.1	Study Pockets	7
3.2	Study Areas	7
3.3	Study Criteria	7
3.4	Study Methodology	7
4.0	Base Case Modeling Assumptions	8
5.0	Western Colorado Study Pocket Analysis	9
5.1	Benchmark Cases Modeling	9
5	5.1.1 Generation Scenario	10
5.2	INFO-2023-1 – NRIS	13
5	5.2.1 Study Cases Modeling	13
5	5.2.2 Steady-State Analysis	13
5	5.2.3 Summary	14
6.0	Cost Estimates and Assumptions	14
6.1	Total Cost of Transmission Provider's Interconnecting Facilities	14
6.2	Total Cost of Station Network Upgrades	15
6.3	Summary of Costs assigned to INFO-2023-1	17
6.4	Cost Estimate Assumptions	17
7 0	Contingency List File	18

List of Tables

Table 1 – Summary of Request for INFO-2023-1 as an NRIS	5
Table 2 – Generation Dispatch Used to Create the	10
Table 3 – Total Cost of Transmission Provider's Interconnection Facilities	
Table 4 – INFO-2023-1 Transmission Provider's Interconnection Facilities	15
Table 5 – Total Cost of Station Network Upgrades by GIR	15
Table 6 – Station Network Upgrades - Uintah 230 kV Substation	16
List of Figures	
List of Figures	
Figure 1: Approximate Location of INFO-2023-1 POI	6

1.0 Summary

This report is an informational evaluation of a 150 MW Solar Photovoltaic (PV) plus 150 MW Battery Energy Storage System (BESS) Hybrid Generating Facility requesting 150 MW of interconnection service with a Point of Interconnection (POI) at the Uintah 230 kV substation. The expected Commercial Operation Date (COD) of the Generating Facility is July 15, 2026. The following studies were performed in this informational study:

1. Generating Facility as a 150 MW of Network Resource Interconnection Service (NRIS)

No contingent facility upgrades were identified because of this study. This report is an informational evaluation and does not grant any Interconnection Service or Transmission Service. The results are based on the modeling assumptions and study scope specified by the Customer, which may or may not reflect the standard modeling assumptions followed for the LGIP studies.

1.1 INFO-2023-1 NRIS Results

The total cost of the upgrades required to interconnect INFO-2023-1 at the Uintah 230 kV substation for NRIS is \$3.37 million (Section 6.3)

2.0 Introduction

This report is an informational evaluation of a 150 MW Solar (PV) plus 150 MW BESS Hybrid Generating Facility connecting at the Uintah 230 kV substation. The study included a modeled Generating Facility supplied by the customer.

A summary and description of the request for INFO-2023-1 as an NRIS are shown in Table 1.

Table 1 – Summary of Request for INFO-2023-1 as an NRIS

INFO#	Resource Type	Service (MW)	Service Type	COD	POI	Location
INFO-2023-1	PV + BESS	150	NRIS	7/15/2026	Uintah 230 kV substation	West Mesa County, CO

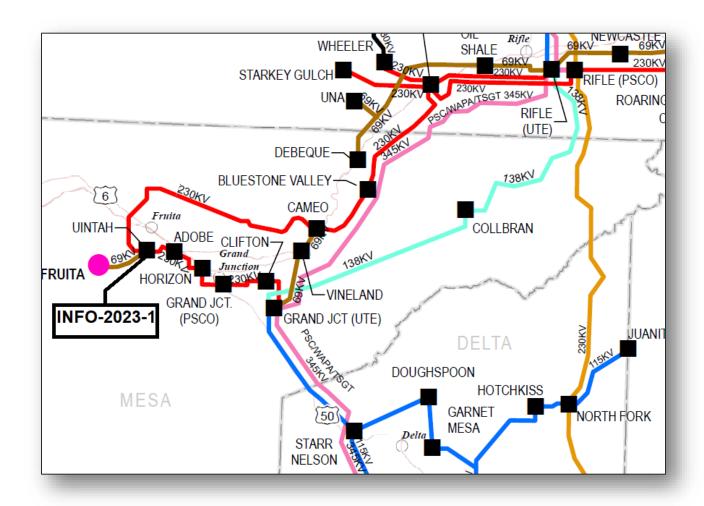


Figure 1: Location of INFO-2023-1 POI

3.0 Study Scope

The study was performed using the modeling assumptions specified by the Interconnection Customer (IC).

The scope of the study includes steady-state (thermal and voltage) analysis and cost estimates. The non-binding cost estimates provide total cost responsibility for Transmission Provider Interconnection Facilities (TPIF), Station Network Upgrades, and System Network Upgrades.

Per the Study Request, INFO-2023-1 was analyzed as NRIS.

3.1 Study Pockets

The POI of INFO-2023-1 is located within the Western Colorado study pocket. The generation was sunk into the Denver Metro study pocket.

3.2 Study Areas

The study area for the Western Colorado study pocket includes the WECC base case zones 708. The generation sink is in zone 700.

3.3 Study Criteria

The following steady-state analysis criteria is used to identify violations on the PSCo system and the Affected Systems:

P0 - System Intact conditions:

Thermal Loading: ≤ 100% of the normal facility rating

Voltage range: 0.95 to 1.05 per unit

P1 & P2-1 – Single Contingencies:

Thermal Loading: ≤ 100% normal facility rating

Voltage range: 0.90 to 1.10 per unit

Voltage deviation: ≤ 8% of pre-contingency voltage

P2 (except P2-1), P4, P5 & P7 - Multiple Contingencies:

Thermal Loading: ≤ 100% emergency facility rating

Voltage range: 0.90 to 1.10 per unit

Voltage deviation: ≤ 8% of pre-contingency voltage

3.4 Study Methodology

The steady-state power flow assessment is performed using the PSLF software.

Thermal violations are identified if a facility (i) resulted in a thermal loading >100% in the Study Case after the study pocket GIR cluster addition and (ii) contributed to an incremental loading increase of 1% or more to the benchmark case loading.

Voltage violations are identified if a bus (i) resulted in a bus voltage >1.1 p.u. (or <0.9 p.u.) in the Study Case after the study pocket GIR cluster addition and (ii) contributed to an adverse impact of +0.005 p.u. (or -0.005 p.u.) compared to the Benchmark Case voltage.

DFAX criteria for identifying contribution to thermal overloads is ≥1%. DFAX criteria for identifying contribution to the voltage violations is 0.005 p.u.

4.0 Base Case Modeling Assumptions

The 2027-28HW2a1 WECC case released on Sept. 3, 2021, was selected as the Starting Case. The Base Case was created from the Starting Case by including the following modeling changes. The following approved transmission projects in PSCo's 10-year transmission plan, with an in-service date before summer 2028 were modeled:

(https://www.oasis.oati.com/woa/docs/PSCO/PSCOdocs/FERC 890 Q1 3-23-2023 Final.pdf)

- Colorado Power Pathway Project, Segments 1-5:
 - o Missile Site Canal Crossing 1 & 2, 345 kV
 - o Pawnee Canal Crossing 1 & 2, 345 kV
 - o Fort St. Vrain Canal Crossing 1 & 2, 345 kV
 - o Canal Crossing Goose Creek 1 & 2, 345 kV
 - o Goose Creek Shortgrass 345 kV
 - Goose Creek Cheyenne Ridge 345 kV
 - o May Valley Tundra 1 & 2, 345 kV
 - o Goose Creek May Valley 1 & 2, 345 kV

The Base Case model includes the existing PSCo generation resources and all Affected Systems' existing resources. No additional generation was modeled on the Colorado Power Pathway Project.

In addition, the following higher-queued generation from PSCo's queue were modeled online in the Base Case along with any System Network Upgrades identified in their corresponding studies.

 Individual GIRs (GI-2014-6, GI-2020-01, GI-2020-03, GI-2020-04, GI-2020-05, GI-2020-10, GI-2020-13, GI-2021-2, GI-2021-3, GI-2021-6)

5.0 Western Colorado Study Pocket Analysis

5.1 Benchmark Cases Modeling

The Benchmark Case was created from the starting Case with updates to conform to the latest FAC-008 facility ratings. The client requested that the Benchmark Case reflect a decommissioning of Craig, Hayden, and Rifle generating stations. Craig and Hayden are exporters into PSCo's transmission system, so interchange was adjusted to reflect their removal.

The Western Colorado study pocket is bounded by three WECC Power Transfer Paths: TOT5, TOT2A, and TOT1A. TOT5 consists of a group of transmission lines that connect western Colorado and eastern Colorado across the Continental Divide of Colorado. TOT2A is a group of transmission lines that connect southwest Colorado and northwest New Mexico. TOT1A consists of transmission lines that connect northwest Colorado to northeast Utah. PSCo has partial ownership in TOT5 and TOT2A but not in TOT1A. Western Area Power Administration – Rocky Mountain Region (WAPA-RMR) is the path operator for all three paths. Removing Craig, Hayden, and Rifle generation from the benchmark case has a significant impact on TOT5 flows. This study may inaccurately represent available capacity to serve PSCo load on TOT5 with the customer-requested removals.

At present, if generation is added in Western Colorado to serve network loads East of the Continental Divide, transmission service would need to be procured from the capacity owners from west-to-east across TOT5. If the capacity owners do not have available transfer capability for this transmission service, a transmission service study would be required because "NRIS" does not convey transmission service. The TOT5 west-to-east total transfer capability (TTC) is 1680 MW and transfers west-to-east across TOT5 above the 1680 MW TTC to serve PSCo native loads in Eastern Colorado may require transmission upgrades across the Continental Divide of Colorado. These network upgrades would be developed as part of a transmission service request study followed by a WECC path rating process and a path allocation process with the other capacity owners of TOT5, beyond the scope of this informational study.

5.1.1 Generation Scenario

The Benchmark Case for Generation scenario was created from the Base Case by adopting the generation dispatch in Table 2 to reflect heavy generation in the Northern Colorado pocket.

Table 2 - Generation Dispatch Used to Create the Western Colorado Generation Benchmark Case (MW is Gross Capacity)

Bus	(IVIVV IS (1033	Capac	Pgen	Pmax
Number	Bus Name	ID	Status	(MW)	(MW)
70553	ARAP5&6	G5	1	35	40
70553	ARAP5&6	G6	1	35	40.7
70554	ARAP7	ST	1	44	45
70878	BIGHORN_S1	S1	1	156	240
70753	BRONCO_W1	W1	1	120	300
70069	CABCRKA	НА	1	160	162
70070	CABCRKB	НВ	1	160	162
70825	CEDAR2_W1	W1	1	50	125
70826	CEDAR2_W2	W2	1	40.3	100.8
70827	CEDAR2_W3	W3	1	5.3	25
70823	CEDARCK_1A	W1	1	88	220
70824	CEDARCK_1B	W2	1	32	80
70670	CEDARPT_W1	W1	1	49.7	124.2
70671	CEDARPT_W2	W2	1	50.4	126
70761	CEP5_B1	B1	1	25	50
70763	CEP5_S1	S1	1	130	200
70756	CEP6_B1	B1	1	60	125
70758	CEP6_S1	S1	1	162.8	250.5
70914	CEP7_S1	S1	1	50.2	77.2
70106	CHEROK4	G4	0	0	383
70145	CHEROKEE5	G5	1	150	184.6
70146	CHEROKEE6	G6	1	150	185.4
70147	CHEROKEE7	ST	1	227	228
70733	CHEYRGE_W1	W1	1	49.6	124
70736	CHEYRGE_W2	W2	1	50.4	126
70739	CHEYRGW_W1	W1	1	49.6	124
70742	CHEYRGW_W2	W2	1	50.4	126
70933	COGENTRIX_PV	S3	1	19.5	30
70120	COMAN_2	C2	1	340	365
70777	COMAN_3	C3	1	780	804
70934	COMAN_S1	S1	1	81.3	125

Bus				Pgen	Pmax
Number	Bus Name	ID	Status	(MW)	(MW)
70701	CO_GRN_E	W1	1	32.4	81
70702	CO_GRN_W	W2	1	32.4	81
78517	FTRNG1CC	G1	1	139	140.5
78518	FTRNG2CC	G2	1	137	141.3
78515	FTRNG3CC	ST	1	207.7	208.2
70665	GLDNWST_W1	W1	1	49.6	124.1
70666	GLDNWST_W2	W2	1	50	125
70931	GSANDHIL_PV	S1	1	12.4	19
70932	HOOPER_PV	S2	1	19.5	30
70495	JMSHAFR1	G2	1	35	35
70495	JMSHAFR1	G1	1	35.8	35.8
70493	JMSHAFR2	ST	1	7.4	50.7
70490	JMSHAFR3	ST	1	15.8	50
70490	JMSHAFR3	G3	1	35	36.1
70487	JMSHAFR4	G5	1	15	33
70487	JMSHAFR4	G4	1	12.8	34.8
70565	KNUTSON1	G1	1	40.5	72.5
70566	KNUTSON2	G2	1	40.5	72.5
70635	LIMON1_W	W1	1	80.4	201
70636	LIMON2_W	W2	1	80.4	201
70637	LIMON3_W	W3	1	80.4	201
15	LV-PV	1	1	150	180.6
70314	MANCHEF1	G1	1	130	140
70315	MANCHEF2	G2	1	130	140
70818	MTNBRZ_W1	W1	1	67.6	169
70310	PAWNEE	C1	1	534.5	536
71016	PEAKVIEWLO	W1	1	60	60
70710	PTZLOGN1	W1	1	80.4	201
70712	PTZLOGN2	W2	1	48	120
70713	PTZLOGN3	W3	1	31.8	79.5
70714	PTZLOGN4	W4	1	74	175
70499	QF_B4-4T	G5	1	12	25
70499	QF_B4-4T	G4	1	12	24
70556	QF B4D4T	ST	1	24	70
70498	QF BCP2T	G3	1	30	34.1
70498	QF_BCP2T	ST	1	35	36
70500	QF CPP1T	G2	1	20	24
70500	QF CPP1T	G1	1	20	24

Page 11 of 18

Bus				Pgen	Pmax
Number	Bus Name	ID	Status	(MW)	(MW)
70501	QF_CPP3T	ST	1	26	27
70723	RDGCREST	W1	1	11.9	29.7
78516	RD_NIXON	C1	1	213.4	225
78022	RH_PV_GEN	PV	1	16	32.4
78024	RPS_PV_GEN	PV	1	5	32.4
70629	RUSHCK1_W1	W1	1	80.8	202
70771	RUSHCK1_W3	W3	1	71.2	178
70631	RUSHCK2_W2	W2	1	88	220
70593	SPNDLE1	G1	1	120	143.1
70594	SPNDLE2	G2	1	120	140.6
70721	SPRNGCAN1_W1	W1	1	25.9	64.8
70715	SPRNGCAN2_W2	W2	1	13.6	64.8
70562	SPRUCE1	G1	1	120	136.5
70563	SPRUCE2	G2	1	120	135.5
70409	ST.VRAIN	ST	1	283	317.8
70406	ST.VR_2	G2	1	96	133.4
70407	ST.VR_3	G3	1	110	171.5
70408	ST.VR_4	G4	1	120	173.6
70950	ST.VR_5	G5	1	122	162
70951	ST.VR_6	G6	1	150	162
70935	SUNPOWER	S1	1	33.8	52
70010	TBII_GEN	W	1	65	76
78524	TESLA1	H1	1	1.2	28
78537	TNGG_A	G3	1	27	27
78537	TNGG_A	G2	1	27	27
78537	TNGG_A	G1	1	27	27
78538	TNGG_B	G2	1	9	27
78538	TNGG_B	G1	1	27	27
78543	TNGG_FC	G1	0	0	27
79015	CRAIG 1	1	0	0	470
79016	CRAIG 2	1	0	0	470
79017	CRAIG 3	1	0	0	478
79040	HAYDEN1	1	0	0	202
79041	HAYDEN2	1	0	0	285
79251	QFATLAS1	1	0	0	34.7
79251	QFATLAS1	2	0	0	17.4
79252	QFATLAS2	4	0	0	17.4
79252	QFATLAS2	3	0	0	17.4

5.2 INFO-2023-1 - NRIS

5.2.1 Study Cases Modeling

An NRIS Study Case was developed from the Generation scenario Benchmark Case by modeling INFO-2023-1 high-side GSU connected to the Uintah 230 kV bus. The 150 MW NRIS output of INFO-2023-1 is balanced against all PSCo generation connected to the PSCo Transmission System outside the study pocket on a pro-rata basis. Generation is sunk into the Denver Metro Area, per requested study assumptions.

5.2.2 Steady-State Analysis

Contingency analysis was performed on the entire PSCo network.

Contingency analysis resulted in no new overloads or voltage concerns.

The multiple contingency analysis on the NRIS Study Case did not show any thermal violations.

Single contingency and multiple contingency analysis showed no voltage violations attributed to the INFO-2023-1 as NRIS. The contingency list is disclosed with the PSLF cases used to complete this study.

5.2.3 Summary

NRIS identified for INFO-2023-1 is 150 MW.

The NRIS study identified no new overloads caused by the INFO-2023-1 as a NRIS GIR.

6.0 Cost Estimates and Assumptions

There are two types of costs identified in the study:

- 1. Transmission Provider's Interconnection Facilities (TPIF) which are directly assigned to each GIR.
- 2. Station equipment Network Upgrades, which are allocated to each GIR connecting to that station on a per-capita basis per Section 4.2.4(a) of the LGIP.

6.1 Total Cost of Transmission Provider's Interconnecting Facilities

The total cost of Transmission Provider's Interconnection Facilities for each POI and INFO-2023-1's cost assignment is given in Table 3.

Table 3 - Total Cost of Transmission Provider's Interconnection Facilities

GIR	POI	Total Cost (million)
INFO-2023-1	Uintah 230 kV bus	\$1.80

Table 4 specifies the INFO-2023-1 project's Transmission Provider's Interconnection Facilities and the corresponding costs.

Table 4: INFO-2023-1 Transmission Provider's Interconnection Facilities

interconnection i acinties					
Element	Description	Cost Est. (Million)			
PSCo's Uintah 230 kV Substation	Interconnect INFO-2023-1 at the existing Uintah 230 kV Substation. The new equipment includes: • (1) 230 kV deadend structure • (3) 230 kV surge arresters • (1) 230 kV 3000 A disconnect switch • (3) PTs • (3) CTs • Fiber communication equipment • Station controls • Associated electrical equipment, bus, wiring and grounding • Associated foundations and structures • Associated transmission line communications, fiber, relaying and testing.	\$1.80			
Total Cost Estimate for Owned Interconnection	\$1.80				
Time Frame	Site, design, procure and construct	30-36 Months			

6.2 Total Cost of Station Network Upgrades

The total cost of Station Network Upgrades for INFO-2023-1 is given in Table 5.

Table 5 – Total Cost of Station Network Upgrades by GIR

GIR	POI	Total Cost (million)
INFO-2023-1	Uintah 230 kV bus	\$1.57

The details of the Station Network Upgrades required at the Uintah 230 kV bus are shown in Table 6.

Table 6: Station Network Upgrades - Uintah 230 kV Substation

Cabotation				
Element	Description	Cost Est. (Million)		
PSCo's Uintah 230	Interconnection of INFO-2023-1 at the Uintah			
kV Substation	230 kV Substation.			
	The new equipment includes:			
	• (1) 230 kV deadend structure			
	• (1) 230 kV 3000 A circuit breaker			
	• (1) 230 kV 3000 A disconnect switch			
	Station controls and wiring			
	Associated foundations and structures	\$1.47		
	Siting and Land Rights support for facilities			
	permitting	\$0.10		
Total Cost Estimate for				
Interconnection Facili	\$1.57			
Time Frame	30-36 Months			

6.3 Summary of Costs assigned to INFO-2023-1

The total cost of the required upgrades for INFO-2023-1 to interconnect at a new INFO-2023-1 230 kV Switching Station with a POI at Uintah 230 kV bus as NRIS is \$3.37 million.

- Cost of Transmission Provider's Interconnection Facilities is \$1.80 million (Table 3)
- Cost of Station Network Upgrades is \$1.57 million (Table 5)

The list of improvements required to accommodate the interconnection of INFO-2023-1 are given in Tables 4 & 6. System improvements are subject to revision as a more detailed and refined design is produced.

6.4 Cost Estimate Assumptions

PSCo (or its Contractor) will perform all construction, wiring, testing, and commissioning for PSCo owned and maintained facilities. The cost estimates are in 2023 dollars with an escalation percentage and contingencies applied to the cost estimates. Cost estimates are based upon current site conditions at the Uintah 230 kV Substation. Disposition of higher queued interconnection requests for interconnection at the Uintah 230 kV Substation could impact interconnection availability at the Uintah 230 kV Substation and/or have cost implications depending upon the final location of the interconnection position.

The Uintah 230 kV Substation yard will not require expansion to accommodate this generation interconnection. Remote end upgrades are not required as a result of the new generation.

The estimated costs include all applicable labor and overheads associated with the siting, engineering, design, and construction of the PSCo facilities to facilitate interconnection. The estimated costs do not include the cost for any Customer owned equipment and associated design and engineering. Labor is estimated at straight time only, no overtime work is included.

7.0 Contingency List File

PSLF_CTG_list.otg